Circ_USP36/miR-182-5p/KLF5 axis regulates the ox-LDL-induced injury in human umbilical vein smooth muscle cells

Circ_USP36/miR-182-5p/KLF5 轴调控 ox-LDL 诱导的人脐静脉平滑肌细胞损伤

阅读:6
作者:Qiang Zhao, Ying-Hong Lu, Xin Wang, Xue-Jun Zhang

Abstract

Atherogenesis is a chronic inflammatory process, closely related to high morbidity and mortality. Circular RNAs (circRNAs) were reported to function in atherosclerosis. However, the functional impact of circRNA ubiquitin-specific Protease 36 (circ_USP36) on atherosclerosis and the possible mechanism are still unclear. Serum specimens were collected from atherosclerosis patients and healthy volunteers. Human umbilical vein smooth muscle cells (HUVSMCs) exposed with 25 μg/mL oxidized low-density lipoprotein (ox-LDL) were utilized to simulate atherosclerosis. Expression of circ_USP36, microRNA (miR)-182-5p and Kruppel-like factor 5 (KLF5) was determined via quantitative real-time polymerase chain reaction or western blot assay. Cell viability and apoptosis were evaluated by Cell Counting Kit-8 and flow cytometry. Cell metastasis, including migration and invasion, was assessed via Transwell assay. Biomarker protein was analyzed by western blot. The relationship among circ_USP36, miR-182-5p and KLF5 was confirmed by dual-luciferase reporter and RNA pull-down assays. Circ_USP36 and KLF5 were up-regulated, while miR-182-5p was down-regulated in atherosclerosis patients and ox-LDL-induced HUVSMCs. Circ_USP36 knockdown inhibited proliferation and metastasis of ox-LDL-induced HUVSMCs by up-regulating miR-182-5p. MiR-182-5p targeted KLF5, and ameliorated ox-LDL-mediated injury of HUVSMCs. Circ_USP36 knockdown down-regulated KLF5 expression by sponging miR-182-5p. Knockdown of circ_USP36 alleviated ox-LDL-mediated injury of HUVSMCs by modulating miR-182-5p/KLF5 axis, potentially providing a treatment target for atherosclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。