Dual targeting of estrogen receptor α and estrogen-related receptor α: a novel endocrine therapy for endometrial cancer

雌激素受体α和雌激素相关受体α的双重靶向作用:子宫内膜癌的新型内分泌治疗方法

阅读:7
作者:XiaoDan Mao #, Binhua Dong #, Min Gao, GuanYu Ruan, MeiMei Huang, Elena Ioana Braicu, Jalid Sehouli, PengMing Sun

Background

Endometrial cancer (EC) is a hormone dependent carcinoma that may involve complex molecular mechanisms. Endocrine therapy by blocking the estrogen and estrogen receptor α (ERα) has been effective in breast cancer, while it is still controversial in EC. Recently, estrogen-related receptor α (ERRα) was proven to be another endocrine therapy target.

Conclusion

Taken together, the results indicate that dual targeting on ERα and ERRα represents a better anti-tumor effect, which provides a novel endocrine based therapy strategy for EC.

Methods

The anti-tumor effect of selective estrogen receptor modulators (SERMs) and XCT790 (XCT) used alone or in combination were evaluated in both of ERα-positive (ERα+) and ERα-negative (ERα-) EC cells. ERα and ERRα mRNA were tested by qPCR, while the protein was detected by Western blot. The proliferation was tested by MTS and cell cycle, apoptosis rate were analyzed by flow cytometry.

Results

A relatively high dose (10 μM) of tamoxifen (TAM) suppressed the expression of ERα and ERRα in two types of EC cells. However, 10 μM raloxifene (RAL) exhibited no effect on ERα and ERRα, while 10 μM XCT down regulated ERRα specifically, but not ERα in all EC cells. When dual targeting on ERα and ERRα by combining TAM with XCT, the proliferation inhibitory effect and apoptosis reached the strongest in all EC cells (P<0.05). Moreover, the inhibitory effect of proliferation was attributed significantly to the G0/G1 arrest (P<0.05). Interestingly, the apoptosis induced by combining TAM with XCT were obviously higher in ERα+ EC cells than ERα- EC cells (P<0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。