Nanocomposite Hydrogel with Tantalum Microparticles for Rapid Endovascular Hemostasis

含钽微粒纳米复合水凝胶用于快速血管内止血

阅读:10
作者:Hassan Albadawi, Izzet Altun, Jingjie Hu, Zefu Zhang, Anshuman Panda, Han-Jun Kim, Ali Khademhosseini, Rahmi Oklu

Abstract

Endovascular embolization to treat vascular hemorrhage involves pushing coil-shaped metal wires into the artery repeatedly until they are densely packed to slow the blood flow and clot. However, coil embolization is associated with high rebleeding rates, unpredictable economics and, most importantly, they rely on the patient's ability to make a clot. These issues are exacerbated when the patient is anticoagulated or coagulopathic. A novel bioengineered tantalum-loaded nanocomposite hydrogel for gel embolic material (Ta-GEM) that can be rapidly delivered using clinical catheters for instant hemostasis regardless of the coagulopathic state is reported. Ta-GEM formulation is visible by most of the clinically available imaging modalities including ultrasound, computed tomography, magnetic resonance imaging, and fluoroscopy without significant artifact. In addition, Ta-GEM can be retrieved, allowing temporary vascular occlusion, and it can be used to rescue cases of failed coil embolization. Ta-GEM occlusion of first-order arteries such as the renal artery and iliac artery in a swine model is found to be safe and durable; by 28 days, 75% of the injected Ta-GEM in the arterial lumen is replaced by dense connective tissue. Altogether, this study demonstrates that Ta-GEM has many advantages over the current technologies and has potential applications in clinical practice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。