Forward genetic analysis to identify determinants of dopamine signaling in Caenorhabditis elegans using swimming-induced paralysis

利用游泳引起的麻痹进行正向遗传分析以识别秀丽隐杆线虫多巴胺信号传导的决定因素

阅读:4
作者:J Andrew Hardaway, Shannon L Hardie, Sarah M Whitaker, Sarah R Baas, Bing Zhang, Daniel P Bermingham, Ariana J Lichtenstein, Randy D Blakely

Abstract

Disrupted dopamine (DA) signaling is believed to contribute to the core features of multiple neuropsychiatric and neurodegenerative disorders. Essential features of DA neurotransmission are conserved in the nematode Caenorhabditis elegans, providing us with an opportunity to implement forward genetic approaches that may reveal novel, in vivo regulators of DA signaling. Previously, we identified a robust phenotype, termed Swimming-induced paralysis (Swip), that emerges in animals deficient in the plasma membrane DA transporter. Here, we report the use and quantitative analysis of Swip in the identification of mutant genes that control DA signaling. Two lines captured in our screen (vt21 and vt22) bear novel dat-1 alleles that disrupt expression and surface trafficking of transporter proteins in vitro and in vivo. Two additional lines, vt25 and vt29, lack transporter mutations but exhibit genetic, biochemical, and behavioral phenotypes consistent with distinct perturbations of DA signaling. Our studies validate the utility of the Swip screen, demonstrate the functional relevance of DA transporter structural elements, and reveal novel genomic loci that encode regulators of DA signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。