X-ray Crystal Structure, Geometric Isomerism, and Antimicrobial Activity of New Copper(II) Carboxylate Complexes with Imidazole Derivatives

新型咪唑衍生物铜(II)羧酸配合物的X射线晶体结构、几何异构体和抗菌活性

阅读:3
作者:Ioana Dorina Vlaicu, Gheorghe Borodi, Gina Vasile Scăețeanu, Mariana Carmen Chifiriuc, Luminița Măruțescu, Marcela Popa, Mariana Stefan, Ionel Florinel Mercioniu, Martin Maurer, Constantin G Daniliuc, Rodica Olar, Mihaela Badea

Abstract

Five new copper(II) acrylate complexes (acr is the acrylate anion: C&sub3;H&sub3;O&sub2;) with imidazole derivatives (2-methylimidazole/2-MeIm, 5-methylimidazole/5-MeIm, 2-ethylimidazole/2-EtIm) of type: cis-[Cu(2-RIm)&sub2;(acr)&sub2;]·xH&sub2;O ((1): R = ⁻CH&sub3;, x = 2; (4): R = ⁻CH&sub2;⁻CH&sub3;, x = 0), trans-[Cu(2-RIm)&sub2;(acr)&sub2;] ((2): R = ⁻CH&sub3;; (5): R = ⁻CH&sub2;⁻CH&sub3;) and trans-[Cu(5-RIm)&sub2;(acr)&sub2;] ((3): R = ⁻CH&sub3;) have been prepared and characterized by elemental analysis, Fourier Transform Infrared spectrometry (FTIR), Electron Paramagnetic Resonance (EPR), electronic reflectance spectroscopy, scanning electron microscopy, and mass spectrometry. The single crystal X-ray diffraction study of complexes (2) and (5) reveals that the copper(II) ion is located on an inversion center and show elongated octahedral geometry completed by two coplanar bidentate acrylates and two unidentate imidazole derivatives displayed in trans positions. For complex (4) the single crystal X-ray diffraction shows that the copper(II) ion is in a distorted octahedral environment which can be easily confused with a trigonal prism completed by two bidentate acrylates and two unidentate imidazole derivatives displayed in cis positions. These results indicate the fact that complexes (4) and (5) are the geometric isomers of the same compound bis(acrylate)-bis(2-ethylimidazole)-copper(II). Complexes (1) and (2), as well as (4) and (5), were produced simultaneously in the reaction of the corresponding copper(II) acrylate with imidazole derivatives in methanol solution. Furthermore, in order to be able to formulate potential applications of the obtained compounds, our next goal was to investigate the in vitro antimicrobial activity of the synthesized complexes against Gram-positive and Gram-negative bacteria, as well as fungal strains, of both clinical and ecological importance (biodeterioration of historical buildings). The trans isomers (2) and (5), followed by (4) have shown the broadest range of antimicrobial activity. In case of (1) and (2) isomers, the trans isomer (2) was significantly more active than cis (1), while the cis isomer (4) proved to be more active than trans (5). Taken together, the biological evaluation results indicate that the trans (2) was the most active complex, demonstrating its potential for the development of novel antimicrobial agents, with potential applications in the biomedical and restoration of architectural monuments fields.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。