<sc>A</sc> multi-hierarchical approach reveals <sc>d</sc>-serine as a hidden substrate of sodium-coupled monocarboxylate transporters

<sc>A</sc>多层级方法揭示<sc>d</sc>-丝氨酸是钠偶联单羧酸转运蛋白的隐藏底物

阅读:6
作者:Pattama Wiriyasermkul, Satomi Moriyama, Masataka Suzuki, Pornparn Kongpracha, Nodoka Nakamae, Saki Takeshita, Yoko Tanaka, Akina Matsuda, Masaki Miyasaka, Kenji Hamase, Tomonori Kimura, Masashi Mita, Jumpei Sasabe, Shushi Nagamori

Abstract

Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。