Molecular Organization of Integrin-Based Adhesion Complexes in Mouse Embryonic Stem Cells

小鼠胚胎干细胞中整合素粘附复合物的分子组织

阅读:5
作者:Shumin Xia, Evelyn K F Yim, Pakorn Kanchanawong

Abstract

The mechanical microenvironment serves as an important factor influencing stem cell differentiation. Mechanobiological responses depend strongly on actomyosin contractility and integrin-based cell-extracellular matrix (ECM) interactions mediated by adhesive structures such as focal adhesions (FAs). While the roles of FAs in mechanobiology have been intensively studied in many mesenchymal and migratory cell types, recently it has been recognized that certain pluripotent stem cells (PSCs) exhibited significantly attenuated FA-mediated mechanobiological responses. FAs in such PSCs are sparsely distributed and much less prominent in comparison to "classical" FAs of typical adherent cells. Despite these differences, insights into how FAs in PSCs are structurally organized to perform their functions are still elusive. Using mouse embryonic stem cells (mESCs) to study PSC-ECM interactions, here we surveyed the molecular composition and nanostructural organization of FAs. We found that, despite being small in size, mESC FAs appeared to be compositionally mature, containing markers such as vinculin, zyxin, and α-actinin, and dependent on myosin II contractility. Using super-resolution microscopy, we revealed that mESC FAs were organized into a conserved multilayer nanoscale architecture. However, the nanodomain organization was compressed in mESCs, with the force transduction layer spanning ∼10 nm, significantly more compact than in FAs of other cell types. Furthermore, we found that the position and orientation of vinculin, a key mechanotransduction protein, were modulated in an ECM-dependent manner. Our analysis also revealed that while most core FA genes were expressed, the expression of LIM domain proteins was comparatively lower in PSCs. Altogether our results suggest that while core structural and mechanosensitive elements are operational in mESC FAs, their structural organization and regulatory aspects may diverge significantly from "classical" FAs, which may account for the attenuated mechanobiological responses of these cell types.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。