Adaptation of codon usage to tRNA I34 modification controls translation kinetics and proteome landscape

密码子使用对 tRNA I34 修饰的适应控制翻译动力学和蛋白质组景观

阅读:5
作者:Xueliang Lyu, Qian Yang, Lin Li, Yunkun Dang, Zhipeng Zhou, She Chen, Yi Liu

Abstract

Codon usage bias is a universal feature of all genomes and plays an important role in regulating protein expression levels. Modification of adenosine to inosine at the tRNA anticodon wobble position (I34) by adenosine deaminases (ADATs) is observed in all eukaryotes and has been proposed to explain the correlation between codon usage and tRNA pool. However, how the tRNA pool is affected by I34 modification to influence codon usage-dependent gene expression is unclear. Using Neurospora crassa as a model system, by combining molecular, biochemical and bioinformatics analyses, we show that silencing of adat2 expression severely impaired the I34 modification levels for the ADAT-related tRNAs, resulting in major ADAT-related tRNA profile changes and reprogramming of translation elongation kinetics on ADAT-related codons. adat2 silencing also caused genome-wide codon usage-biased ribosome pausing on mRNAs and proteome landscape changes, leading to selective translational repression or induction of different mRNAs. The induced expression of CPC-1, the Neurospora ortholog of yeast GCN4p, mediates the transcriptional response after adat2 silencing and amino acid starvation. Together, our results demonstrate that the tRNA I34 modification by ADAT plays a major role in driving codon usage-biased translation to shape proteome landscape.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。