Spatiotemporal dynamics exhibited by horizontal basal cells reveal a pro-neurogenic pathway during injury-induced olfactory epithelium regeneration

水平基底细胞表现出的时空动态揭示了损伤诱导的嗅觉上皮再生过程中的促神经发生途径

阅读:6
作者:Jonathan D Louie, Camila M Barrios-Camacho, Benjamin H Bromberg, Constantin A Hintschich, James E Schwob

Abstract

Horizontal basal cells (HBCs) mediate olfactory epithelium (OE) regeneration following severe tissue injury. The dynamism of the post-injury environment is well illustrated by in silico modeling of RNA sequencing data that demonstrate an evolving HBC transcriptome. Unfortunately, spatiotemporally dynamic processes occurring within HBCs in situ remain poorly understood. Here, we show that HBCs at 24 h post-OE injury spatially redistribute a constellation of proteins, which, in turn, helped to nominate Rac1 as a regulator of HBC differentiation during OE regeneration. Using our primary culture model to activate HBCs pharmacologically, we demonstrate that concurrent Rac1 inhibition attenuates HBC differentiation potential. This in vitro functional impairment manifested in vivo as decreased HBC differentiation into olfactory sensory neurons following HBC-specific Rac1 conditional knockout. Taken together, our data potentiate the design of hyposmia-alleviating therapies and highlight aspects of in situ HBC spatiotemporal dynamics that deserve further investigation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。