Soluble Aβ1-42 increases the heterogeneity in synaptic vesicle pool size among synapses by suppressing intersynaptic vesicle sharing

可溶性 Aβ1-42 通过抑制突触间囊泡共享来增加突触间突触囊泡池大小的异质性

阅读:6
作者:Daehun Park, Sunghoe Chang

Abstract

Growing evidence has indicated that prefibrillar form of soluble amyloid beta (sAβ1-42) is the major causative factor in the synaptic dysfunction associated with AD. The molecular changes leading to presynaptic dysfunction caused by sAβ1-42, however, still remains elusive. Recently, we found that sAβ1-42 inhibits chemically induced long-term potentiation-induced synaptogenesis by suppressing the intersynaptic vesicle trafficking through calcium (Ca2+) dependent hyperphosphorylation of synapsin and CaMKIV. However, it is still unclear how sAβ1-42 increases intracellular Ca2+ that induces hyperphosphorylation of CaMKIV and synapsin, and what is the functional consequences of sAβ1-42-induced defects in intersynaptic vesicle trafficking in physiological conditions. In this study, we showed that sAβ1-42elevated intracellular Ca2+ through not only extracellular Ca2+ influx but also Ca2+ release from mitochondria. Surprisingly, without Ca2+ release from mitochondria, sAβ1-42 failed to increase intracellular Ca2+ even in the presence of normal extracellular Ca2+. We further found that sAβ1-42-induced mitochondria Ca2+ release alone sufficiently increased Serine 9 phosphorylation of synapsin. By blocking synaptic vesicle reallocation, sAβ1-42 significantly increased heterogeneity of total synaptic vesicle pool size among synapses. Together, our results suggested that by disrupting the axonal vesicle trafficking, sAβ1-42 disabled neurons to adjust synaptic pool sizes among synapses, which might prevent homeostatic rescaling in synaptic strength of individual neurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。