25-Hydroxycholesterol exacerbates vascular leak during acute lung injury

25-羟基胆固醇加剧急性肺损伤期间的血管渗漏

阅读:10
作者:Jennifer H Madenspacher, Eric D Morrell, Jeffrey G McDonald, Bonne M Thompson, Yue Li, Konstantin G Birukov, Anna A Birukova, Renee D Stapleton, Aidin Alejo, Peer W Karmaus, Julie M Meacham, Prashant Rai, Carmen Mikacenic, Mark M Wurfel, Michael B Fessler

Abstract

Cholesterol-25-hydroxylase (CH25H), the biosynthetic enzyme for 25-hydroxycholesterol (25HC), is most highly expressed in the lung, but its role in lung biology is poorly defined. Recently, we reported that Ch25h is induced in monocyte-derived macrophages recruited to the airspace during resolution of lung inflammation and that 25HC promotes liver X receptor-dependent (LXR-dependent) clearance of apoptotic neutrophils by these cells. Ch25h and 25HC are, however, also robustly induced by lung-resident cells during the early hours of lung inflammation, suggesting additional cellular sources and targets. Here, using Ch25h-/- mice and exogenous 25HC in lung injury models, we provide evidence that 25HC sustains proinflammatory cytokines in the airspace and augments lung injury, at least in part, by inducing LXR-independent endoplasmic reticulum stress and endothelial leak. Suggesting an autocrine effect in endothelium, inhaled LPS upregulates pulmonary endothelial Ch25h, and non-hematopoietic Ch25h deletion is sufficient to confer lung protection. In patients with acute respiratory distress syndrome, airspace 25HC and alveolar macrophage CH25H were associated with markers of microvascular leak, endothelial activation, endoplasmic reticulum stress, inflammation, and clinical severity. Taken together, our findings suggest that 25HC deriving from and acting on different cell types in the lung communicates distinct, temporal LXR-independent and -dependent signals to regulate inflammatory homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。