Loss of FoxA2 accelerates neoplastic changes in the intrahepatic bile duct partly via the MAPK signaling pathway

FoxA2 的缺失部分通过 MAPK 信号通路加速肝内胆管的肿瘤性改变

阅读:8
作者:Junyi Shen, Yongjie Zhou, Xiaoyun Zhang, Wei Peng, Chihan Peng, Qiang Zhou, Chuan Li, Tianfu Wen, Yujun Shi

Background

Intrahepatic cholangiocarcinoma (ICC) is characterized by a highly aggressive nature and a dismal outcome. FOXA2 is an archetypal transcription factor involved in cholangiocyte proliferation.

Conclusion

Low FOXA2 expression negatively affected the prognosis of patients with ICC. Loss of FoxA2 expression could promote intrahepatic bile duct neoplasia partly via activation of the MAPK signaling pathway. Materials and methods: In all, the data of 85 patients with ICC were retrospectively collected and analyzed. TAA was used to induce ICC in FoxA2-/- mice and WT mice. RNA-sequencing analysis was used to identify the expression of different genes.

Methods

In all, the data of 85 patients with ICC were retrospectively collected and analyzed. TAA was used to induce ICC in FoxA2-/- mice and WT mice. RNA-sequencing analysis was used to identify the expression of different genes.

Results

FOXA2 expression was negatively correlated with tumor stage (p = 0.024). Univariate and multivariate analyses showed that low FoxA2 expression was associated with tumor relapse and survival. At 20 weeks after TAA administration, FoxA2-/- mice displayed significant manifestations of neoplasia, while WT mice did not.RNA sequencing analysis showed that the expression of genes in the MAPK signaling pathway was significantly higher in FoxA2-/- mice. IHC and Western blot results showed that p-ERK1/2, CREB1 and RAS were highly expressed in FoxA2-/- mice. Furthermore, using in vitro experiments with siRNA, we found that low expression of FoxA2 could exacerbate the metastatic potential of ICC. The expression of p-ERK1/2 and RAS, which are key mediators of the MAPK signaling pathway, was significantly increased.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。