Interferon Gamma Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity

干扰素γ诱导M1巨噬细胞可逆性代谢重编程以维持细胞活力和促炎活性

阅读:6
作者:Feilong Wang, Song Zhang, Ryounghoon Jeon, Ivan Vuckovic, Xintong Jiang, Amir Lerman, Clifford D Folmes, Petras D Dzeja, Joerg Herrmann

Abstract

Classical activation of M1 macrophages with lipopolysaccharide (LPS) is associated with a metabolic switch from oxidative phosphorylation to glycolysis. However, the generalizability of such metabolic remodeling to other modes of M1 macrophage stimulation, e.g. type II interferons (IFNs) such as IFNγ, has remained unknown as has the functional significance of aerobic glycolysis during macrophage activation. Here we demonstrate that IFNγ induces a rapid activation of aerobic glycolysis followed by a reduction in oxidative phosphorylation in M1 macrophages. Elevated glycolytic flux sustains cell viability and inflammatory activity, while limiting reliance on mitochondrial oxidative metabolism. Adenosine triphosphate (ATP) distributed by aerobic glycolysis is critical for sustaining IFN-γ triggered JAK (Janus tyrosine kinase)-STAT-1 (Signal Transducer and Activator of Transcription 1) signaling with phosphorylation of the transcription factor STAT-1 as its signature trait. Inhibition of aerobic glycolysis not only blocks the M1 phenotype and pro-inflammatory cytokine/chemokine production in murine macrophages and also human monocytes/macrophages. These findings extend on the potential functional role of immuno-metabolism from LPS- to IFNγ-linked diseases such as atherosclerosis and autoimmune disease.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。