Comprehensive Proteome Profiling of a Xanthomonas campestris pv. Campestris B100 Culture Grown in Minimal Medium with a Specific Focus on Nutrient Consumption and Xanthan Biosynthesis

对在基本培养基中生长的 Xanthomonas campestris pv. Campestris B100 培养物进行全面蛋白质组分析,重点关注营养消耗和黄原胶生物合成

阅读:7
作者:Ben Struck, Sanne Jitske Wiersma, Vera Ortseifen, Alfred Pühler, Karsten Niehaus

Abstract

Xanthan, a bacterial polysaccharide, is widespread in industrial applications, particularly as a food additive. However, little is known about the process of xanthan synthesis on the proteome level, even though Xanthomonas campestris is frequently used for xanthan fermentation. A label-free LC-MS/MS method was employed to study the protein changes during xanthan fermentation in minimal medium. According to the reference database, 2416 proteins were identified, representing 54.75 % of the proteome. The study examined changes in protein abundances concerning the growth phase and xanthan productivity. Throughout the experiment, changes in nitrate concentration appeared to affect the abundance of most proteins involved in nitrogen metabolism, except Gdh and GlnA. Proteins involved in sugar nucleotide metabolism stay unchanged across all growth phases. Apart from GumD, GumB, and GumC, the gum proteins showed no significant changes throughout the experiment. GumD, the first enzyme in the assembly of the xanthan-repeating unit, peaked during the early stationary phase but decreased during the late stationary phase. GumB and GumC, which are involved in exporting xanthan, increased significantly during the stationary phase. This study suggests that a potential bottleneck for xanthan productivity does not reside in the abundance of proteins directly involved in the synthesis pathways.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。