Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits

抑制细胞周期蛋白依赖性蛋白激酶 5 活性可减轻糖尿病相关的认知缺陷

阅读:8
作者:Wei Liu, Yi Zhou, Rui Liang, Yue Zhang

Abstract

Cognitive deficit is a prevalent and underestimated complication of diabetes, and the underlying cellular and molecular mechanisms are not well understood. Aberrant activity of cyclin-dependent kinase (Cdk)5 is implicated in a number of neurodegenerative diseases. The present study examined the role of Cdk5 in the progression of diabetes-related cognitive deficits. We showed that the Cdk5 protein expression and kinase activity were significantly increased in diabetic mice at 16 wk. In primary cultured hippocampal neurons exposed to 30 mM glucose, Cdk5 protein and kinase activity were also elevated in a time-dependent manner. Moreover, the high glucose exposure led to an aberrant Cdk5 activation due to its activator p25 that was cleaved from p35 by calpain. Both in diabetic mice and in cultured hippocampal neurons exposed to high glucose, inhibition of Cdk5 activity with roscovitine (Ros) or short hairpin RNA (shRNA) decreased the protein levels of cleaved caspase-3 and the ratio of Bax and Bcl-2. The apoptotic rate detected by TUNEL in vivo or Annexin V and propidium iodide staining for flow cytometry in vitro also had obvious reduction. In addition, high glucose exposure resulted in the increase of phosphorylated (phospho)-MAPK kinase (MKK)6, phospho-p38, and c-Jun, which were rescued by Ros or Cdk5 shRNA. It is more important that the cognitive deficits of diabetic mice were also effectively alleviated by Ros. These results indicate that aberrant Cdk5 activity triggered hippocampal neuron apoptosis by activating MKK6/p38 MAPK cascade in hyperglycemia. Inhibition of Cdk5 overactivation attenuates neuronal apoptosis and cognitive deficits and contributes to the relief of diabetic neurotoxicity in the brain.-Liu, W., Zhou, Y., Liang, R., Zhang, Y. Inhibition of cyclin-dependent kinase 5 activity alleviates diabetes-related cognitive deficits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。