Large, Stable Spikes Exhibit Differential Broadening in Excitatory and Inhibitory Neocortical Boutons

大而稳定的尖峰在兴奋性和抑制性新皮质神经末梢中表现出差异性增宽

阅读:6
作者:Andreas Ritzau-Jost, Timur Tsintsadze, Martin Krueger, Jonas Ader, Ingo Bechmann, Jens Eilers, Boris Barbour, Stephen M Smith, Stefan Hallermann

Abstract

Presynaptic action potential spikes control neurotransmitter release and thus interneuronal communication. However, the properties and the dynamics of presynaptic spikes in the neocortex remain enigmatic because boutons in the neocortex are small and direct patch-clamp recordings have not been performed. Here, we report direct recordings from boutons of neocortical pyramidal neurons and interneurons. Our data reveal rapid and large presynaptic action potentials in layer 5 neurons and fast-spiking interneurons reliably propagating into axon collaterals. For in-depth analyses, we establish boutons of mature cultured neurons as models for excitatory neocortical boutons, demonstrating that the presynaptic spike amplitude is unaffected by potassium channels, homeostatic long-term plasticity, and high-frequency firing. In contrast to the stable amplitude, presynaptic spikes profoundly broaden during high-frequency firing in layer 5 pyramidal neurons, but not in fast-spiking interneurons. Thus, our data demonstrate large presynaptic spikes and fundamental differences between excitatory and inhibitory boutons in the neocortex.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。