Inhibition of the mitochondrial pyruvate carrier simultaneously mitigates hyperinflammation and hyperglycemia in COVID-19

抑制线粒体丙酮酸载体可同时减轻新冠肺炎中的过度炎症和高血糖症。

阅读:2
作者:Bibo Zhu ,Xiaoqin Wei ,Harish Narasimhan ,Wei Qian ,Ruixuan Zhang ,In Su Cheon ,Yue Wu ,Chaofan Li ,Russell G Jones ,Mark H Kaplan ,Robert A Vassallo ,Thomas J Braciale ,Lindsay Somerville ,Jerry R Colca ,Akhilesh Pandey ,Patrick E H Jackson ,Barbara J Mann ,Connie M Krawczyk ,Jeffrey M Sturek ,Jie Sun

Abstract

The relationship between diabetes and coronavirus disease 2019 (COVID-19) is bidirectional: Although individuals with diabetes and high blood glucose (hyperglycemia) are predisposed to severe COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can also cause hyperglycemia and exacerbate underlying metabolic syndrome. Therefore, interventions capable of breaking the network of SARS-CoV-2 infection, hyperglycemia, and hyperinflammation, all factors that drive COVID-19 pathophysiology, are urgently needed. Here, we show that genetic ablation or pharmacological inhibition of mitochondrial pyruvate carrier (MPC) attenuates severe disease after influenza or SARS-CoV-2 pneumonia. MPC inhibition using a second-generation insulin sensitizer, MSDC-0602K (MSDC), dampened pulmonary inflammation and promoted lung recovery while concurrently reducing blood glucose levels and hyperlipidemia after viral pneumonia in obese mice. Mechanistically, MPC inhibition enhanced mitochondrial fitness and destabilized hypoxia-inducible factor-1α, leading to dampened virus-induced inflammatory responses in both murine and human lung macrophages. We further showed that MSDC enhanced responses to nirmatrelvir (the antiviral component of Paxlovid) to provide high levels of protection against severe host disease development after SARS-CoV-2 infection and suppressed cellular inflammation in human COVID-19 lung autopsies, demonstrating its translational potential for treating severe COVID-19. Collectively, we uncover a metabolic pathway that simultaneously modulates pulmonary inflammation, tissue recovery, and host metabolic health, presenting a synergistic therapeutic strategy to treat severe COVID-19, particularly in patients with underlying metabolic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。