USP25 deficiency promotes T cell dysfunction and transplant acceptance via mitochondrial dynamics

USP25 缺乏通过线粒体动力学促进 T 细胞功能障碍和移植接受

阅读:8
作者:Junbo Li, Jingzeng Wang, Tianhui Pan, Xi Zhou, Huifang Yang, Lu Wang, Guobin Huang, Chen Dai, Bo Yang, Bo Zhang, Yuanyuan Zhao, Peixiang Lan, Zhishui Chen

Background

During organ transplantation, pharmacologic drugs targeting T cell activation signal to inhibit T cell-mediated allo-rejection are insufficient and not durable to suppress chronic rejection. Recent advances highlight an exhausted or dysfunctional status of T cells, which favor transplant acceptance.

Conclusions

Our data suggest that USP25 is a potential target to induce T cell dysfunction and allo-graft tolerance. And USP25 mediated mitochondrial homeostasis may contribute to reverse T cell exhaustion or dysfunction in tumor and chronic infection.

Methods

The models of MHC-mismatched (BALB/c to C57BL/6 or USP25 KO mice) heterotopic heart transplantation and skin transplantation were utilized to evaluate the regulatory effects of ubiquitin-specific protease 25(USP25) deficiency in vivo. The consequences of USP25 deficiency on murine T-cell proliferation, activation, cytokine secretion, mixed lymphocyte reaction (MLR) and energy metabolism were investigated in vitro. The signaling pathway of T cells in knock out mice was detected by Western blotting and Co-IP.

Results

We found T cells were dysfunctional inUSP25KO mice. Due to T cell dysfunction, skin and heart graft had a longer survival. In these dysfunctional T cells, mitochondria number and cristae condensation were decreased. Impaired mitochondrial mass and function favored to allo-graft acceptance. Furthermore, USP25 interacted with ATP5A and ATP5B to promote their stability. Conclusions: Our data suggest that USP25 is a potential target to induce T cell dysfunction and allo-graft tolerance. And USP25 mediated mitochondrial homeostasis may contribute to reverse T cell exhaustion or dysfunction in tumor and chronic infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。