Phosphorylation of the Gα protein Gpa2 promotes protein kinase A signaling in yeast

Gα 蛋白 Gpa2 的磷酸化促进酵母中的蛋白激酶 A 信号传导

阅读:5
作者:Shan Huang, Alex Benben, Robert Green, Nina Cheranda, Grace Lee, Benita Joseph, Shannon Keaveney, Yuqi Wang

Abstract

Heterotrimeric G proteins are important molecular switches that facilitate transmission of a variety of signals from the outside to the inside of cells. G proteins are highly conserved, enabling study of their regulatory mechanisms in model organisms such as the budding yeast Saccharomyces cerevisiae Gpa2 is a yeast Gα protein that functions in the nutrient signaling pathway. Using Phos-tag, a highly specific phosphate binding tag for separating phosphorylated proteins, we found that Gpa2 undergoes phosphorylation and that its level of phosphorylation is markedly increased upon nitrogen starvation. We also observed that phosphorylation of Gpa2 depends on glycogen synthase kinase (GSK). Disrupting GSK activity diminishes Gpa2 phosphorylation levels in vivo, and the purified GSK isoforms Mck1 and Ygk3 are capable of phosphorylating Gpa2 in vitro Functionally, phosphorylation enhanced plasma membrane localization of Gpa2 and promoted nitrogen starvation-induced activation of protein kinase A. Together, the findings of our study reveal a mechanism by which GSK- and nutrient-dependent phosphorylation regulates subcellular localization of Gpa2 and its ability to activate downstream signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。