Optogenetically engineered calcium oscillations promote autophagy-mediated cell death via AMPK activation

光遗传学设计的钙振荡通过 AMPK 激活促进自噬介导的细胞死亡

阅读:4
作者:Yi-Shyun Lai, Meng-Ru Hsieh, Thi My Hang Nguyen, Ying-Chi Chen, Hsueh-Chun Wang, Wen-Tai Chiu

Abstract

Autophagy is a double-edged sword for cells; it can lead to both cell survival and death. Calcium (Ca2+) signalling plays a crucial role in regulating various cellular behaviours, including cell migration, proliferation and death. In this study, we investigated the effects of modulating cytosolic Ca2+ levels on autophagy using chemical and optogenetic methods. Our findings revealed that ionomycin and thapsigargin induce Ca2+ influx to promote autophagy, whereas the Ca2+ chelator BAPTA-AM induces Ca2+ depletion and inhibits autophagy. Furthermore, the optogenetic platform allows the manipulation of illumination parameters, including density, frequency, duty cycle and duration, to create different patterns of Ca2+ oscillations. We used the optogenetic tool Ca2+-translocating channelrhodopsin, which is activated and opened by 470 nm blue light to induce Ca2+ influx. These results demonstrated that high-frequency Ca2+ oscillations induce autophagy. In addition, autophagy induction may involve Ca2+-activated adenosine monophosphate (AMP)-activated protein kinases. In conclusion, high-frequency optogenetic Ca2+ oscillations led to cell death mediated by AMP-activated protein kinase-induced autophagy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。