Gallic acid mitigates LPS-induced inflammatory response via suppressing NF-κB signalling pathway in IPEC-J2 cells

没食子酸通过抑制 IPEC-J2 细胞中的 NF-κB 信号通路减轻 LPS 诱导的炎症反应

阅读:12
作者:Long Cai, Zixi Wei, Xuemei Zhao, Yanpin Li, Xilong Li, Xianren Jiang

Abstract

Gallic acid is a phenolic compound that exhibits antibacterial, antioxidative and anti-inflammatory functions. In a previous study, we found that dietary supplementation with gallic acid decreased incidence of diarrhoea and protected intestinal integrity in weaning piglets. However, the underlying mechanism remains unclear. Here, a pig intestinal epithelial cell line (IPEC-J2) was used as an in vitro model to explore the antioxidant and anti-inflammatory capacity of gallic acid. IPEC-J2 cells were stimulated with hydrogen peroxide (H2 O2 ) and lipopolysaccharide (LPS) to establish oxidative and inflammatory models, respectively. Results showed that H2 O2 significantly decreased catalase (CAT) secretion and CAT mRNA abundance in the cells (p < 0.05), while pretreatment with gallic acid did not prevent the decrease in CAT expression induced by H2 O2 . However, gallic acid pretreatment mitigated the increased expression of the tumour necrosis factor-α and interleukin-8 genes caused by LPS in IPEC-J2 cells (p < 0.05). In addition, pretreatment with gallic acid significantly suppressed phosphorylation of NF-κB and IκBα in LPS-stimulated IPEC-J2 cells. Moreover, LPS stimulation decreased the protein abundance of zona occludens 1 (ZO-1) and occludin, while pretreatment with gallic acid preserved expression level of tight junction proteins ZO-1 and occludin in LPS-stimulated IPEC-J2 cells (p < 0.05). In conclusion, gallic acid may mitigate LPS-induced inflammatory responses by inhibiting the NF-κB signalling pathway, exerting positive effects on the barrier function of IPEC-J2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。