Tannic acid-functionalized HEPA filter materials for influenza virus capture

用于捕获流感病毒的单宁酸功能化 HEPA 过滤材料

阅读:6
作者:Subin Kim, Jinhyo Chung, Sang Hyun Lee, Jeong Hyeon Yoon, Dae-Hyuk Kweon, Woo-Jae Chung

Abstract

Influenza, one of the most contagious and infectious diseases, is predominantly transmitted through aerosols, leading to the development of filter-based protective equipment. Though the currently available filters are effective at removing submicron-sized particulates, filter materials with enhanced virus-capture efficiency are still in demand. Coating or chemically modifying filters with molecules capable of binding influenza viruses has received attention as a promising approach for the production of virus-capturing filters. For this purpose, tannic acid (TA), a plant-derived polyphenol, is a promising molecule for filter functionalization because of its antiviral activities and ability to serve as a cost-efficient adhesive for various materials. This study demonstrates the facile preparation of TA-functionalized high-efficiency particulate air (HEPA) filter materials and their efficiency in influenza virus capture. Polypropylene HEPA filter fabrics were coated with TA via a dipping/washing process. The TA-functionalized HEPA filter (TA-HF) exhibits a high in-solution virus capture efficiency of up to 2,723 pfu/mm2 within 10 min, which is almost two orders of magnitude higher than that of non-functionalized filters. This result suggests that the TA-HF is a potent anti-influenza filter that can be used in protective equipment to prevent the spread of pathogenic viruses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。