Integrating spatial transcriptomics and single-cell RNA-sequencing reveals the alterations in epithelial cells during nodular formation in benign prostatic hyperplasia

整合空间转录组学和单细胞 RNA 测序揭示良性前列腺增生结节形成过程中上皮细胞的改变

阅读:5
作者:Xiawei Fei #, Jican Liu #, Junyan Xu #, Hongyan Jing, Zhonglin Cai, Jiasheng Yan, Zhenqi Wu, Huifeng Li, Zhong Wang, Yanting Shen

Conclusions

This study elucidated the comprehensive landscape of epithelial cells during in vivo nodular formation in patients, thereby offering novel insights into the initiation and progression of BPH.

Methods

The robust cell type decomposition (RCTD) method was employed to integrate spatial transcriptomics and single cell RNA sequencing profiles, enabling the elucidation of epithelial cell alterations during nodular formation. Immunofluorescent and immunohistochemical staining was performed for verification.

Objective

Proliferative nodular formation represents a characteristic pathological feature of benign prostatic hyperplasia (BPH) and serves as the primary cause for prostate volume enlargement and consequent lower urinary tract symptoms (LUTS). Its specific mechanism is largely unknown, although several cellular processes have been reported to be involved in BPH initiation and development and highlighted the crucial role of epithelial cells in proliferative nodular formation. However, the technological limitations hinder the in vivo investigation of BPH patients.

Results

The alterations of epithelial cells during the formation of nodules in BPH was observed, and a distinct subgroup of basal epithelial (BE) cells, referred to as BE5, was identified to play a crucial role in driving this progression through the hypoxia-induced epithelial-mesenchymal transition (EMT) signaling pathway. BE5 served as both the initiating cell during nodular formation and the transitional cell during the transformation from luminal epithelial (LE) to BE cells. A distinguishing characteristic of the BE5 cell subgroup in patients with BPH was its heightened hypoxia and upregulated expression of FOS. Histological verification results confirmed a significant association between c-Fos expression and key biological processes such as hypoxia and cell proliferation, as well as the close relationship between hypoxia and EMT in BPH tissues. Furthermore, a strong link between c-Fos expression and the progression of BPH was also been validated. Additionally, notable functional differences were observed in glandular and stromal nodules regarding BE5 cells, with BE5 in glandular nodules exhibiting enhanced capacities for EMT and cell proliferation characterized by club-like cell markers. Conclusions: This study elucidated the comprehensive landscape of epithelial cells during in vivo nodular formation in patients, thereby offering novel insights into the initiation and progression of BPH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。