Serotonin (5-HT) activation of immortalized hypothalamic neuronal cells through the 5-HT1B serotonin receptor

血清素 (5-HT) 通过 5-HT1B 血清素受体激活永生化下丘脑神经元细胞

阅读:5
作者:Stephanie Tung, Alexandre B Hardy, Michael B Wheeler, Denise D Belsham

Abstract

Serotonin [or 5-hydroxytryptamine or (5-HT)] has been implicated as a key modulator in energy homeostasis and a primary focus in the treatment of obesity. There is growing evidence that 5-HT, acting through the 5-HT 1B receptor (5-HT(1B)R) in the paraventricular nucleus of the hypothalamus (PVN), is important to this regulation. However, there is some contention as to whether 5-HT(1B)R action occurs directly on PVN neurons or indirectly via inhibitory inputs into the PVN. To address these questions, we used a novel clonal, hypothalamic neuronal cell model, adult mouse hypothalamic-2/30 (mHypoA-2/30), expressing a PVN-specific marker, single-minded homolog 1, as well as a complement of PVN neuropeptides, including TRH, vasopressin, ghrelin, nucleobindin-2, and galanin. Adult mouse hypothalamic-2/30 neurons were also found to express the 5-HT(1B)R and 5-HT 6 receptor, but not 2C, all previously linked to feeding regulation. Direct serotonergic stimulation (100 nm to 10 μm) of these neurons resulted in dose-dependent cFos activation. 5-HT (10 μm) suppressed forskolin-induced cAMP levels and induced a rise in intracellular Ca(2+) through ER Ca(2+) release, effects that were mimicked by the 5-HT(1B)R agonists, CGS12066B and CP93129, and that were attenuated in the presence of the 5-HT(1B)R-specific inhibitors, GR55562 and isamoltane hemifumarate. Modest transcriptional changes in ghrelin and nucleobindin-2 were also observed in response to 100 nm and 10 μm 5-HT, respectively. These findings support the model wherein 5-HT action through the 1B receptor subtype occurs directly on PVN neurons, leading to potential modification of neuronal transcriptional and secretory machinery.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。