Age-related attenuation of parasympathetic control of the heart in mice

小鼠心脏副交感神经控制随年龄增长而减弱

阅读:6
作者:Jessica L Freeling, Yifan Li

Abstract

The autonomic nervous system maintains homeostasis through the balance of the sympathetic nervous system (SNS) and parasympathetic nervous system (PSNS). Especially evident in the heart, maintenance of this balance is important for the control of heart rate, conduction, and contractility. It is known that aging, similar to various cardiovascular diseases, results in an increase in SNS activity and a decrease in PSNS activity, which may contribute to age-related cardiac dysfunction and remodeling. Intracardiac ganglia relay and integrate the PSNS signals to the heart. Therefore, this study investigated whether altered function of intracardiac ganglia is involved in age-related parasympathetic dysfunction and the potential role of the major cholinergic components of intracardiac ganglionic transmission in the process. This study utilized two age groups of mice, the younger mice at 1-2.5 months of age, and the older mice at 11-12 months of age. The results show that the older mice exhibit diminishment of both baroreflex sensitivity and response to rostral-severed vagal stimulation but preserved response to administration of muscarinic acetylcholine receptor agonist, bethanechol. Analysis of whole atrial lysate revealed significant diminishments in choline acetyltransferase (ChAT) and the upper band of vesicular acetylcholine transporter (VAchT). In contrast, the upper band of the high affinity choline transporter (CHT) was significantly upregulated in the older group. Further analysis showed that the soluble but not insoluble fraction of CHT protein is significantly increased in the older group. This implicates a potential reduction of acetylcholine synthesis and/or release and an improper compensatory change of CHT may be responsible for the PSNS dysfunction exhibited in this model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。