Vacuum Insulated Probe Heated ElectroSpray Ionization source (VIP-HESI) enhances micro flow rate chromatography signals in the Bruker timsTOF mass spectrometer

真空绝缘探针加热电喷雾电离源 (VIP-HESI) 增强了布鲁克 timsTOF 质谱仪中的微流速色谱信号

阅读:5
作者:Mukul K Midha, Charu Kapil, Michal Maes, David H Baxter, Seamus R Morrone, Timothy J Prokop, Robert L Moritz

Abstract

By far the largest contribution to ion detectability in liquid chromatography-driven mass spectrometry-based proteomics is the efficient generation of peptide ions by the electrospray source. To maximize the transfer of peptides from liquid to a gaseous phase to allow molecular ions to enter the mass spectrometer at micro-spray flow rates, an efficient electrospray process is required. Here we describe superior performance of new Vacuum-Insulated-Probe-Heated-ElectroSpray-Ionization source (VIP-HESI) coupled with micro-spray flow rate chromatography and Bruker timsTOF PRO mass spectrometer. VIP-HESI significantly improves chromatography signals in comparison to nano-spray ionization using the CaptiveSpray source and provides increased protein detection with higher quantitative precision, enhancing reproducibility of sample injection amounts. Protein quantitation of human K562 lymphoblast samples displayed excellent chromatographic retention time reproducibility (<10% coefficient-of-variation (CV)) with no signal degradation over extended periods of time, and a mouse plasma proteome analysis identified 12% more plasma protein groups allowing large-scale analysis to proceed with confidence (1,267 proteins at 0.4% CV). We show that Slice-PASEF mode with VIP-HESI setup is sensitive in identifying low amounts of peptide without losing quantitative precision. We demonstrate that VIP-HESI coupled with micro-flow-rate chromatography achieves higher depth of coverage and run-to-run reproducibility for a broad range of proteomic applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。