Loss of epigenetic regulator TET2 and oncogenic KIT regulate myeloid cell transformation via PI3K pathway

表观遗传调节因子 TET2 和致癌基因 KIT 的缺失通过 PI3K 通路调节髓系细胞转化

阅读:6
作者:Lakshmi Reddy Palam, Raghuveer Singh Mali, Baskar Ramdas, Sridhar Nonavinkere Srivatsan, Valeria Visconte, Ramon V Tiu, Bart Vanhaesebroeck, Axel Roers, Alexander Gerbaulet, Mingjiang Xu, Sarath Chandra Janga, Clifford M Takemoto, Sophie Paczesny, Reuben Kapur

Abstract

Mutations in KIT and TET2 are associated with myeloid malignancies. We show that loss of TET2-induced PI3K activation and -increased proliferation is rescued by targeting the p110α/δ subunits of PI3K. RNA-Seq revealed a hyperactive c-Myc signature in Tet2-/- cells, which is normalized by inhibiting PI3K signaling. Loss of TET2 impairs the maturation of myeloid lineage-derived mast cells by dysregulating the expression of Mitf and Cebpa, which is restored by low-dose ascorbic acid and 5-azacytidine. Utilizing a mouse model in which the loss of TET2 precedes the expression of oncogenic Kit, similar to the human disease, results in the development of a non-mast cell lineage neoplasm (AHNMD), which is responsive to PI3K inhibition. Thus, therapeutic approaches involving hypomethylating agents, ascorbic acid, and isoform-specific PI3K inhibitors are likely to be useful for treating patients with TET2 and KIT mutations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。