Parallel mechanisms detect different photoperiods to independently control seasonal flowering and growth in plants

并行机制检测不同的光周期以独立控制植物的季节性开花和生长

阅读:7
作者:Qingqing Wang, Wei Liu, Chun Chung Leung, Daniel A Tartè, Joshua M Gendron

Abstract

For nearly 100 years, we have known that both growth and flowering in plants are seasonally regulated by the length of the day (photoperiod). Intense research focus and powerful genetic tools have propelled studies of photoperiodic flowering, but far less is known about photoperiodic growth, in part because tools were lacking. Here, using a new genetic tool that visually reports on photoperiodic growth, we identified a seasonal growth regulation pathway, from photoperiod detection to gene expression. Surprisingly, this pathway functions in long days but is distinct from the canonical long day photoperiod flowering mechanism. This is possible because the two mechanisms detect the photoperiod in different ways: flowering relies on measuring photoperiod by directly detecting duration of light intensity while the identified growth pathway relies on measuring photosynthetic period indirectly by detecting the duration of photosynthetic metabolite production. In turn, the two pathways then control expression of genes required for flowering or growth independently. Finally, our tools allow us to show that these two types of photoperiods, and their measurement systems, are dissociable. Our results constitute a new view of seasonal timekeeping in plants by showing that two parallel mechanisms measure different photoperiods to control plant growth and flowering, allowing these processes to be coordinated independently across seasons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。