Synthesis of radiolabeled nicotinamide cofactors from labeled pyridines: versatile probes for enzyme kinetics

从标记吡啶合成放射性标记烟酰胺辅因子:酶动力学多功能探针

阅读:13
作者:Arundhuti Sen, Vanja Stojković, Amnon Kohen

Abstract

(14)C-labeled nicotinamide cofactors are widely employed in biomedical investigations, for example, to delineate metabolic pathways, to elucidate enzymatic mechanisms, and as substrates in kinetic isotope effect (KIE) experiments. The (14)C label has generally been located remote from the reactive position, frequently at the adenine ring. Rising costs of commercial precursors and disruptions in the availability of enzymes required for established syntheses have recently made the preparation of labeled nicotinamides such as [Ad-(14)C]NADPH unviable. Here, we report the syntheses and characterization of several alternatives: [carbonyl-(14)C]NADPH, 4R-[carbonyl-(14)C, 4-(2)H]NADPH, and [carbonyl-(14)C, 4-(2)H(2)]NADPH. The new procedures use [carbonyl-(14)C]nicotinamide as starting material, because it is significantly cheaper than other commercial (14)C precursors of NADPH, and require only one commercially available enzyme to prepare NAD(P)(+) and NAD(P)H. The proximity of carbonyl-(14)C to the reactive center raises the risk of an inopportune (14)C isotope effect. This concern has been alleviated via competitive KIE measurements with Escherichia coli dihydrofolate reductase (EcDHFR) that use this specific carbonyl-(14)C NADPH. A combination of binding isotope effect and KIE measurements yielded no significant (12)C/(14)C isotope effect at the amide carbonyl (KIE=1.003±0.004). The reported procedure provides a high-yield, high-purity, and cost-effective alternative to labeled nicotinamide cofactors synthesized by previously published routes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。