Cleavage stimulating factor 64 depletion mitigates cardiac fibrosis through alternative polyadenylation

裂解刺激因子 64 的消耗可通过替代多聚腺苷酸化减轻心脏纤维化

阅读:5
作者:Rahul Neupane, Keith Youker, Hari Krishna Yalamanchili, Katarzyna A Cieslik, Harry Karmouty-Quintana, Ashrith Guha, Rajarajan A Thandavarayan

Abstract

Alternative polyadenylation (APA) regulates gene expression by cleavage and addition of poly(A) sequence at different polyadenylation sites (PAS) in 3'UTR, thus, generating transcript isoforms with different lengths. Cleavage stimulating factor 64 (CstF64) is an APA regulator which plays a role in PAS selection and determines the length of 3'UTR. CstF64 favors the use of proximal PAS, resulting in 3'UTR shortening, which enhances the protein expression by increasing the stability of the target genes. The aim of this study is to investigate the role of CstF64 in cardiac fibrosis, a key event leading to heart failure (HF). We determined the expression of CstF64, key profibrotic genes, and their 3'UTR changes by calculating distal PAS (dPAS) usage in left ventricular (LV) tissues and cardiac fibroblasts from HF patients. CstF64 was upregulated in HF LV tissues and cardiac fibroblasts along with increased deposition of fibrosis genes such as COL1A and FN1 and significant shortening in their 3'UTR. In addition, HF cardiac fibroblasts showed increased transforming growth factor receptor β1 (TGFβR1) expression consistent with significant shortening in 3'UTR of TGFβR1. Upon knockdown of CstF64 from HF fibroblasts, downregulation in pro-fibrotic genes corresponding to lengthening in their 3'UTR was observed. Our finding suggests an important role of CstF64 in myofibroblast activation and promotion of cardiac fibrosis during HF through APA. Therefore, targeting CstF64 mediated RNA processing approach in human HF could provide a new therapeutic treatment strategy for limiting fibrotic remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。