Total Flavonoids from Rhizoma Drynariae (Gusuibu) Alleviates Diabetic Osteoporosis by Activating BMP2/Smad Signaling Pathway

骨碎补总黄酮通过激活BMP2/Smad信号通路缓解糖尿病性骨质疏松症

阅读:5
作者:Xin Hua Fang, Guo Er Zhou, Na Lin

Conclusion

RDF can increase bone trabeculae and bone mineral density by promoting bone formation and inhibiting bone absorption, thereby playing a role in improving DOP. This effect is related to the regulation of the BMP2/Smad signaling pathway.

Methods

Following intragastric administration of RDF for 12 weeks, the body weight, blood glucose, and the bone histopathological changes detected by hematoxylin-eosin (H&E) and calcein staining were monitored, while bone parameters were regularly assessed from observations made by micro-CT. At the end of the experiment, the expression of Bmp2, Bmpr1a, Runx2, and Smad4/5 genes was detected by real-time PCR (RT-PCR). Meanwhile, western blotting or immunohistochemical staining monitored the protein expressions of BMP2, RUNX2, and SMAD5 in the bone.

Results

The results firstly indicated that RDF significantly alleviated the signs and symptoms of DOP, which manifested as improved body weight and blood glucose. As obtained from the results of histopathology and micro-CT, RDF could promote the formation of bone trabeculae and alter several the bone microstructure parameters, including an increase in the bone volume/total volume (BV/TV), connective density (Conn-Dens), and trabecular bone number (Tb.N), as well as a decrease in the trabecular spacing (Tb.Sp). The western blotting analysis and RT-PCR results also confirmed that RDF could markedly increase the mRNA expression levels of Bmp2, Bmpr1α, Smad4, Runx2, and Smad5 in the bone, as well as the corresponding protein expression levels of BMP2, RUNX2, and SMAD5. These results reveal that RDF can activate the BMP2/Smad signaling pathway, thus promoting bone remodeling in DOP rats.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。