Characterizing human ion channels in induced pluripotent stem cell-derived neurons

表征诱导多能干细胞衍生的神经元中的人类离子通道

阅读:5
作者:Alison Haythornthwaite, Sonja Stoelzle, Alexander Hasler, Andrea Kiss, Johannes Mosbacher, Michael George, Andrea Brüggemann, Niels Fertig

Abstract

Neurons derived from human-induced pluripotent stem cells were characterized using manual and automated patch-clamp recordings. These cells expressed voltage-gated Na(+) (Na(v)), Ca(2+) (Ca(v)), and K(+) (K(v)) channels as expected from excitable cells. The Na(v) current was TTX sensitive, IC(50) = 12 ± 6 nM (n = 5). About 50% of the Ca(v) current was blocked by 10 µM of the L-type channel blocker nifedipine. Two populations of the K(v) channel were present in different proportions: an inactivating (A-type) and a noninactivating type. The A-type current was sensitive to 4-AP and TEA (IC(50) = 163 ± 93 µM; n = 3). Application of γ-aminobutyric acid (GABA) activated a current sensitive to the GABA(A) receptor antagonist bicuculline, IC(50) = 632 ± 149 nM (n = 5). In both devices, comparable action potentials were generated in the current clamp. With unbiased, automated patch clamp, about 40% of the cells expressed Na(v) currents, whereas visual guidance in manual patch clamp provided almost a 100% success rate of patching "excitable cells." These results show high potential for pluripotent stem cell-derived neurons as a useful model for drug discovery, in combination with automated patch-clamp recordings for high-throughput and high-quality drug assessments at human neuronal ion channels in their correct cellular background.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。