Transcriptome analysis reveals autophagy as regulator of TGFβ/Smad-induced fibrogenesis in trabecular meshwork cells

转录组分析显示自噬是 TGFβ/Smad 诱导的小梁网细胞纤维化的调节剂

阅读:7
作者:April Nettesheim, Myoung Sup Shim, Josh Hirt, Paloma B Liton

Abstract

The trabecular meshwork (TM) is a specialized ocular tissue, which is responsible, together with the Schlemm's canal (SC), for maintaining appropriate levels of intraocular pressure. Dysfunction of these tissues leads to ocular hypertension and increases the risk for developing glaucoma. Previous work by our laboratory revealed dysregulated autophagy in aging and in glaucomatous TM cells. In order to gain more insight in the role of autophagy in the TM pathophysiology, we have conducted transcriptome and functional network analyses of TM primary cells with silenced expression of the autophagy genes Atg5 and Atg7. Atg5/7-deficient TM cells showed changes in transcript levels of several fibrotic genes, including TGFβ2, BAMBI, and SMA. Furthermore, genetic and pharmacological inhibition of autophagy was associated with a parallel reduction in TGFβ-induced fibrosis, caused by a BAMBI-mediated reduced activation of Smad2/3 signaling in autophagy-deficient cells. At the same time, TGFβ treatment led to Smad2/3-dependent dysregulation of autophagy in TM cells, characterized by increased LC3-II levels and autophagic vacuoles content. Together, our results indicate a cross-talk between autophagy and TGFβ signaling in TM cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。