Acute Exercise Regulates hTERT Gene Expression and Alternative Splicing in the hTERT-BAC Transgenic Mouse Model

急性运动调节 hTERT-BAC 转基因小鼠模型中的 hTERT 基因表达和可变剪接

阅读:7
作者:Aaron L Slusher, Jeongjin Jj Kim, Mark Ribick, Andrew T Ludlow

Conclusions

Endurance exercise increased hTERT gene expression, and altered FL hTERT splicing in contractile tissues and may maintain telomere length necessary to improve the function and health of the organism.

Methods

A bacterial artificial chromosome mouse model containing the 54-kilobase hTERT gene locus inserted into its genome (hTERT-BAC) was utilized. The gastrocnemius, left ventricle, and brain were excised before (Pre), upon cessation (Post), and during recovery (1, 24, 48, and 72 h; n = 5/time point) from treadmill running (30 min at 60% maximum speed). Full-length (FL) hTERT and the "minus beta" (-β) AS variant (skips exons 7 and 8 and does not code for active telomerase) were measured by gel-based and droplet digital reverse transcription-polymerase chain reaction methods. SF3B4 and SRSF2 protein expression were measured by Western blotting.

Purpose

This study aimed to examine hTERT AS in response to acute treadmill running.

Results

Compared with Pre, FL hTERT increased at Post before decreasing during recovery in the gastrocnemius (48 and 72 h; P ≤ 0.001) and left ventricle (24 h; P = 0.004). The percentage of FL hTERT in the gastrocnemius also increased during recovery (1 and 72 h; P ≤ 0.017), whereas a decrease was observed in the left ventricle (1, 24, and 48 h; P ≤ 0.041). hTERT decreased in the brain (48 h), whereas FL hTERT percentage remained unaltered. SF3B4 protein expression decreased throughout recovery in the gastrocnemius and tended to be associated with FL hTERT (r = -0.348, P = 0.075) and -β in opposite directions (r = 0.345, P = 0.067). Conclusions: Endurance exercise increased hTERT gene expression, and altered FL hTERT splicing in contractile tissues and may maintain telomere length necessary to improve the function and health of the organism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。