Revealing the mechanism of Dahuang Huanglian Xiexin Decoction attenuates dysbiosis via IL-17 signaling pathway based on network pharmacology and experimental validation

基于网络药理学及实验验证揭示大黄黄连泻心汤通过IL-17信号通路改善菌群失调的作用机制

阅读:5
作者:Tianyi Ren, Hui Feng, Yong Xu, Yun Ling

Conclusions

This study found that XXD has a good regulatory effect on dysbiosis and its induced symptoms. Network pharmacology was used to predict the key compounds and therapeutic targets of XXD, and preliminary experiments confirmed that XXD may regulate bacterial dysbiosis by inhibiting the IL-17 signaling pathway.

Methods

Histopathological observation and intestinal high-throughput sequencing were used to observe the effect. Preliminary prediction of the mechanism of action of XXD in treating dysbiosis through network pharmacology and molecular docking. Finally, the effect of XXD on the IL-17 signaling pathway was verified through in vivo experiments.

Results

Histopathology and high-throughput sequencing of intestinal flora indicated that XXD has a good regulatory effect on bacterial dysbiosis. At the same time, network pharmacology identified a total of 40 active compounds, 14 of which may be key compounds for XXD to treat dysbiosis. In addition, the study also revealed 14 potential key targets as well as the top 5 therapeutic targets: IL-6, TNF-α, IL-1β, TP53 and PTGS2. GO and KEGG predicted the key pathway for IL-17 signaling pathway to play a role in XXD. In the verification of the prediction results, it was found that the above targets and the IL-17 target showed strong activity in molecular docking. Furthermore, it was found that XXD can reduce the levels of IL-17, IL-6, TNF-α, IL-1β, p53 and COX-2 in serum, while inhibiting the expression of IL-17, IL-17RA, Act-1 and NF-κB protein and the mRNA expression of IL-17, IL-17RA and Act-1 in colon tissue. Conclusions: This study found that XXD has a good regulatory effect on dysbiosis and its induced symptoms. Network pharmacology was used to predict the key compounds and therapeutic targets of XXD, and preliminary experiments confirmed that XXD may regulate bacterial dysbiosis by inhibiting the IL-17 signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。