Novel genetically engineered H3.3G34R model reveals cooperation with ATRX loss in upregulation of Hoxa cluster genes and promotion of neuronal lineage

新型基因工程 H3.3G34R 模型揭示了与 ATRX 缺失协同作用,上调 Hoxa 簇基因并促进神经元谱系

阅读:7
作者:Aalaa S Abdallah, Herminio J Cardona, Samantha L Gadd, Daniel J Brat, Plamena P Powla, Waleed S Alruwalli, Chen Shen, David J Picketts, Xiao-Nan Li, Oren J Becher

Background

Pediatric high-grade gliomas (pHGGs) are aggressive pediatric CNS tumors and an important subset are characterized by mutations in H3F3A, the gene that encodes Histone H3.3 (H3.3). Substitution of Glycine at position 34 of H3.3 with either Arginine or Valine (H3.3G34R/V), was recently described and characterized in a large cohort of pHGG samples as occurring in 5-20% of pHGGs. Attempts to study the mechanism of H3.3G34R have proven difficult due to the lack of knowledge regarding the cell-of-origin and the requirement for co-occurring mutations for model development. We sought to develop a biologically relevant animal model of pHGG to probe the downstream effects of the H3.3G34R mutation in the context of vital co-occurring mutations.

Conclusions

This study proposes a mechanism in which ATRX loss is the major contributor to many key transcriptomic changes in H3.3G34R pHGGs. Accession number: GSE197988.

Methods

We developed a genetically engineered mouse model (GEMM) that incorporates PDGF-A activation, TP53 loss and the H3.3G34R mutation both in the presence and loss of Alpha thalassemia/mental retardation syndrome X-linked (ATRX), which is commonly mutated in H3.3G34 mutant pHGGs.

Results

We demonstrated that ATRX loss significantly increases tumor latency in the absence of H3.3G34R and inhibits ependymal differentiation in the presence of H3.3G34R. Transcriptomic analysis revealed that ATRX loss in the context of H3.3G34R upregulates Hoxa cluster genes. We also found that the H3.3G34R overexpression leads to enrichment of neuronal markers but only in the context of ATRX loss. Conclusions: This study proposes a mechanism in which ATRX loss is the major contributor to many key transcriptomic changes in H3.3G34R pHGGs. Accession number: GSE197988.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。