Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors

通过具有大小优化基因组并编码紧凑型腺嘌呤碱基编辑器的单个腺相关病毒进行有效的体内碱基编辑

阅读:4
作者:Jessie R Davis, Xiao Wang, Isaac P Witte, Tony P Huang, Jonathan M Levy, Aditya Raguram, Samagya Banskota, Nabil G Seidah, Kiran Musunuru, David R Liu

Abstract

The viral delivery of base editors has been complicated by their size and by the limited packaging capacity of adeno-associated viruses (AAVs). Typically, dual-AAV approaches based on trans-splicing inteins have been used. Here we show that, compared with dual-AAV systems, AAVs with size-optimized genomes incorporating compact adenine base editors (ABEs) enable efficient editing in mice at similar or lower doses. Single-AAV-encoded ABEs retro-orbitally injected in mice led to editing efficiencies in liver (66%), heart (33%) and muscle (22%) tissues that were up to 2.5-fold those of dual-AAV ABE8e, and to a 93% knockdown (on average) of human PCSK9 and of mouse Pcsk9 and Angptl3 in circulation, concomitant with substantial reductions of plasma cholesterol and triglycerides. Moreover, three size-minimized ABE8e variants, each compatible with single-AAV delivery, collectively offer compatibility with protospacer-adjacent motifs for editing approximately 82% of the adenines in the human genome. ABEs encoded within single AAVs will facilitate research and therapeutic applications of base editing by simplifying AAV production and characterization, and by reducing the dose required for the desired level of editing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。