Triblock Copolymer Micelles with Tunable Surface Charge as Drug Nanocarriers: Synthesis and Physico-Chemical Characterization

具有可调表面电荷的三嵌段共聚物胶束作为药物纳米载体:合成与物理化学表征

阅读:4
作者:Radostina Kalinova, Ivaylo Dimitrov

Abstract

Polymeric micelles have gained increasing interest as efficient drug delivery systems for cancer treatment and diagnosis. The aim of the present study was to construct and to evaluate novel polymeric nanosized drug carriers with tunable surface charges. Initially, amphiphilic triblock copolymers with predetermined molar mass characteristics were synthesized by applying controlled polymerization techniques. The copolymers self-assembled in aqueous media into core-shell spherical micelles, comprising a biodegradable hydrophobic poly(D,L-lactide) core, positively charged middle layer of poly((2-dimethylamino)ethyl methacrylate), and an outer shell of neutral hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate), with various densities of the short polyether side chains. The block copolymer micelles with average diameters of about 70 nm and surface charges varying from strongly positive to neutral were characterized and loaded with the model, natural, hydrophobic drug curcumin. Characteristics such as drug loading efficiency, in-vitro drug release profiles, and stability under physiological conditions were evaluated and discussed in terms of nanocarriers' composition. As a result, the most promising candidates for potential application in nanomedicine were identified.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。