Tetrahydrobiopterin metabolism attenuates ROS generation and radiosensitivity through LDHA S-nitrosylation: novel insight into radiogenic lung injury

四氢生物蝶呤代谢通过 LDHA S-亚硝化减弱 ROS 生成和放射敏感性:对放射性肺损伤的新见解

阅读:4
作者:Yang Feng, Yahui Feng, Liming Gu, Wei Mo, Xi Wang, Bin Song, Min Hong, Fenghao Geng, Pei Huang, Hongying Yang, Wei Zhu, Yang Jiao, Qi Zhang, Wei-Qun Ding, Jianping Cao, Shuyu Zhang

Abstract

Genotoxic therapy triggers reactive oxygen species (ROS) production and oxidative tissue injury. S-nitrosylation is a selective and reversible posttranslational modification of protein thiols by nitric oxide (NO), and 5,6,7,8-tetrahydrobiopterin (BH4) is an essential cofactor for NO synthesis. However, the mechanism by which BH4 affects protein S-nitrosylation and ROS generation has not been determined. Here, we showed that ionizing radiation disrupted the structural integrity of BH4 and downregulated GTP cyclohydrolase I (GCH1), which is the rate-limiting enzyme in BH4 biosynthesis, resulting in deficiency in overall protein S-nitrosylation. GCH1-mediated BH4 synthesis significantly reduced radiation-induced ROS production and fueled the global protein S-nitrosylation that was disrupted by radiation. Likewise, GCH1 overexpression or the administration of exogenous BH4 protected against radiation-induced oxidative injury in vitro and in vivo. Conditional pulmonary Gch1 knockout in mice (Gch1fl/fl; Sftpa1-Cre+/- mice) aggravated lung injury following irradiation, whereas Gch1 knock-in mice (Gch1lsl/lsl; Sftpa1-Cre+/- mice) exhibited attenuated radiation-induced pulmonary toxicity. Mechanistically, lactate dehydrogenase (LDHA) mediated ROS generation downstream of the BH4/NO axis, as determined by iodoacetyl tandem mass tag (iodoTMT)-based protein quantification. Notably, S-nitrosylation of LDHA at Cys163 and Cys293 was regulated by BH4 availability and could restrict ROS generation. The loss of S-nitrosylation in LDHA after irradiation increased radiosensitivity. Overall, the results of the present study showed that GCH1-mediated BH4 biosynthesis played a key role in the ROS cascade and radiosensitivity through LDHA S-nitrosylation, identifying novel therapeutic strategies for the treatment of radiation-induced lung injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。