Harmine alleviates atherogenesis by inhibiting disturbed flow-mediated endothelial activation via protein tyrosine phosphatase PTPN14 and YAP

哈尔明通过蛋白酪氨酸磷酸酶 PTPN14 和 YAP 抑制受干扰的血流介导内皮细胞活化,从而缓解动脉粥样硬化形成

阅读:5
作者:Yujie Yang, Qiannan Ma, Zhiyu Li, Hui Wang, Chenghu Zhang, Yajin Liu, Bochuan Li, Yingmei Wang, Qinghua Cui, Fengxia Xue, Ding Ai, Yi Zhu, Jinlong He

Background and purpose

Disturbed flow induces endothelial dysfunction and contributes to uneven distribution of atherosclerotic plaque. Emerging evidence suggests that harmine, a natural constituent of extracts of Peganum harmala, has potent beneficial activities. Here, we investigated if harmine has an atheroprotective role under disturbed flow and the underlying mechanism. Experimental approach: Mice of ApoE-/- , LDLR-/- , and endothelial cell (EC)-specific overexpression of yes-associated protein (YAP) in ApoE-/- background were fed with a Western diet and given harmine for 4 weeks. Atherosclerotic lesion size, cellular composition, and expression of inflammatory genes in the aortic roots were assessed. HUVECs were treated with oscillatory shear stress (OSS) and harmine and also used for proteomic analysis. Key

Purpose

Disturbed flow induces endothelial dysfunction and contributes to uneven distribution of atherosclerotic plaque. Emerging evidence suggests that harmine, a natural constituent of extracts of Peganum harmala, has potent beneficial activities. Here, we investigated if harmine has an atheroprotective role under disturbed flow and the underlying mechanism. Experimental approach: Mice of ApoE-/- , LDLR-/- , and endothelial cell (EC)-specific overexpression of yes-associated protein (YAP) in ApoE-/- background were fed with a Western diet and given harmine for 4 weeks. Atherosclerotic lesion size, cellular composition, and expression of inflammatory genes in the aortic roots were assessed. HUVECs were treated with oscillatory shear stress (OSS) and harmine and also used for proteomic analysis. Key

Results

Harmine retarded atherogenesis in both ApoE-/- and LDLR-/- mice by inhibiting the endothelial inflammatory response. Mechanistically, harmine blocked OSS-induced YAP nuclear translocation and EC activation by reducing phosphorylation of YAP at Y357. Overexpression of endothelial YAP blunted the beneficial effects of harmine in mice. Proteomic study revealed that protein tyrosine phosphatase non-receptor type 14 (PTPN14) could bind to YAP. Moreover, harmine increased PTPN14 expression by stabilizing its protein level and inhibiting its degradation in proteasomes. PTPN14 knockdown blocked the effects of harmine on YAPY357 and EC activation. Finally, overexpression of PTPN14 mimicked the effects of harmine and ameliorated atherosclerosis, and knockdown of PTPN14 blunted the atheroprotective effects of harmine and accelerated atherosclerosis, in a partial ligation mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。