Dexmedetomidine ameliorates ischemia-induced nerve injury by up-regulating Sox11 expression

右美托咪啶通过上调 Sox11 表达改善缺血引起的神经损伤

阅读:5
作者:Qiong Wang #, Na Zhang #, Xue Bai, Jianhua Liu, Xiaobao Bi, Yonghong Tan

Background

Dexmedetomidine (Dex) is associated with several biological processes. Ischemic stroke has the characteristics of high morbidity and mortality. Herein, we aimed to explore whether Dex ameliorates ischemia-induced injury and determine its mechanism.

Conclusions

The role of Dex in cell viability and survival was verified in this study. Moreover, Dex protected neurons from MCAO-induced injury by up-regulating the expression of Sox11. Our research proposes a potential drug to improve the functional recovery of stroke patients in the clinic.

Methods

Real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting were used to measure gene and protein expression. Cellular viability and proliferation were assessed by Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays, respectively. Cell apoptosis was detected by flow cytometry. An oxygen-glucose deprivation/reoxygenation model of SK-N-SH and SH-SY5Y cells was constructed. A middle cerebral artery occlusion (MCAO) model was also built to assess Dex function in vivo. Neuronal function was assessed using the Bederson Behavior Score and Longa Behavior Score.

Results

We found that Dex positively and dose-dependently regulated Sox11 expression and prevented damage caused by oxygen-glucose deprivation/reoxygenation (OGD/R), enhancing cell viability and proliferation and reducing apoptosis in SK-N-SH and SH-SY5Y cells. The overexpression of Sox11 antagonized OGD/R-induced SK-N-SH and SH-SY5Y cell apoptosis and promoted cell growth in vitro. Furthermore, cell proliferation was decreased and cell apoptosis was increased after Sox11 knockdown in Dex-treated SK-N-SH and SH-SY5Y cells. We demonstrated that Dex prevented OGD/R-induced cell injury by up-regulating Sox11. Furthermore, we also confirmed that Dex protected rat from ischemia-induced injury in the MCAO model. Conclusions: The role of Dex in cell viability and survival was verified in this study. Moreover, Dex protected neurons from MCAO-induced injury by up-regulating the expression of Sox11. Our research proposes a potential drug to improve the functional recovery of stroke patients in the clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。