Synthesis, characterization and adsorption optimization of bimetallic La-Zn metal organic framework for removal of 2,4-dichlorophenylacetic acid

双金属La-Zn金属有机骨架的合成、表征及吸附优化及其对2,4-二氯苯乙酸的去除

阅读:9
作者:Omaymah Alaysuy, Meshari M Aljohani, Kholood Alkhamis, Nada M Alatawi, Awatif R Z Almotairy, Khulood A Abu Al-Ola, Abdelrahman S Khder, Nashwa M El-Metwaly

Abstract

To eliminate the hazardous pesticide 2,4-dichlorophenylacetic acid (2,4-D) through aqueous solutions, stacked nanorods known as hetero bimetallic organic frameworks (MOFs) of 2-methyl imidazole based on lanthanum and zinc are created. The research's convincing discoveries displayed that La/Zn-MOF is an actual adsorbent for the removal of 2,4-D through aqueous solutions. The La/Zn-MOF was investigated using a variability of techniques, with scanning electron microscope (SEM), powered X-ray diffraction (PXRD), and Brunauer-Emmett-Teller (BET) investigation. La/Zn-MOF has a significant pore capacity of 1.04 cm³/g and a comparatively large surface area of 897.69 m2/g. Our findings, which are quite intriguing, demonstrate that adsorption behavior is pointedly wedged by variations in pH. A pH 6 dose of 0.02 g was shown to be the optimal setting for the greatest capacity for adsorption. Because adsorption is an endothermic process, temperature variations affect its capability. The adsorption method was fit both isothermally and kinetically using the Langmuir isotherm classical. It was created that the entire process made use of a chemisorption mechanism. Solution pH, temperature, adsorbent dosage, and time were all improved using the Box-Behnken design (BBD) and Response Surface Methodology (RSM). We were able to accurately calculate the values of ΔHo, ΔSo, and ΔGo for 2,4-D by following the guidelines. These results demonstrated the spontaneous and endothermic character of the adsorption procedure employing La/Zn-MOF as an adsorbent. Adsorption-desorption cycles can be carried out up to five times. With the synthesized La/Zn-MOF adsorbent due to its exceptional reusability. Many processes, such π-π interaction, pore filling, H-bonding, or electrostatic contact, were postulated to explain the connection between La/Zn-MOF and 2,4-D after extra research to appreciate well the link was conducted. This is the first study to demonstrate the effectiveness of utilizing La/Zn-MOF as an adsorbent to eliminate 2,4-D from wastewater models. The results display that a pH of 6 is required to achieve the maximal 2,4-D adsorption capability on La/Zn-MOF, which is 307.5 mg/g.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。