Altered dynamics of mitochondria and reactive oxygen species in the erythrocytes of migrating red-headed buntings

迁徙红头鹀红细胞中线粒体和活性氧的动态变化

阅读:9
作者:Nitin Bhardwaj, Anit Kumar, Neelu Jain Gupta

Background

Blood antioxidants provide propensity to mitigate reactive oxygen species (ROS) apart from other oxidative challenges during a high-energy state of migration in night migratory songbirds. The study investigated the modulation of erythrocytes, mitochondrial abundance, hematocrit changes, and relative expression of fat transport-related genes during migration in red-headed buntings (Emberiza bruniceps). We hypothesized an increase in antioxidants along with the mitigation of mitochondria-related reactive oxygen species elevation and consequential apoptosis occurring during migration.

Conclusion

These results suggested that adaptive changes occur in mitochondrial behavior and apoptosis of erythrocytes. The transition in erythrocytes, antioxidant genes, and fatty acid metabolism gene expressions suggested differences in regulatory strategies at the cellular/transcriptional level during different states of simulated migration in birds.

Methods

Male red-headed buntings (n = 6) were placed under short days (8 h of light and 16 h of dark, 8L:16D)/long days (14L:10D) and photo induced to simulated non-migratory, nMig; pre-migratory, pMig; and migratory, Mig, states. Erythrocyte shape, reactive oxygen species production, mitochondrial membrane potential (MMP), reticulocyte proportion, and apoptosis were analyzed using flow cytometry and relative expression of fat metabolizing and antioxidant genes was measured by using qPCR.

Results

There was a significant increase in hematocrit, erythrocyte area, and mitochondrial membrane potential. Reactive oxygen species and apoptotic erythrocyte proportion declined in the Mig state. The changes in antioxidant genes (SOD1 and NOS2), fatty acid translocase (CD36), and metabolic (FABP3, DGAT2, GOT2, and ATGL) genes showed a significant increment during the Mig state.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。