Engineering Immunological Tolerance Using Quantum Dots to Tune the Density of Self-Antigen Display

利用量子点调节自身抗原显示密度实现免疫耐受

阅读:9
作者:Krystina L Hess, Eunkeu Oh, Lisa H Tostanoski, James I Andorko, Kimihiro Susumu, Jeffrey R Deschamps, Igor L Medintz, Christopher M Jewell

Abstract

Treatments for autoimmunity - diseases where the immune system mistakenly attacks self-molecules - are not curative and leave patients immunocompromised. New studies aimed at more specific treatments reveal development of inflammation or tolerance is influenced by the form self-antigens are presented. Using a mouse model of multiple sclerosis (MS), we show for the first time that quantum dots (QDs) can be used to generate immunological tolerance by controlling the density of self-antigen on QDs. These assemblies display dense arrangements of myelin self-peptide associated with disease in MS, are uniform in size (<20 nm), and allow direct visualization in immune tissues. Peptide-QDs rapidly concentrate in draining lymph nodes, co-localizing with macrophages expressing scavenger receptors involved in tolerance. Treatment with peptide-QDs reduces disease incidence 10-fold. Strikingly, the degree of tolerance - and the underlying expansion of regulatory T cells - correlates with the density of myelin molecules presented on QDs. A key discovery is that higher numbers of tolerogenic particles displaying lower levels of self-peptide are more effective for inducing tolerance than fewer particles each displaying higher densities of peptide. QDs conjugated with self-antigens could serve as a new platform to induce tolerance, while visualizing QD therapeutics in tolerogenic tissue domains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。