Natural Frequencies Optimization of Thin-Walled Circular Cylindrical Shells Using Axially Functionally Graded Materials

采用轴向功能梯度材料的薄壁圆柱壳的固有频率优化

阅读:6
作者:Nabeel Taiseer Alshabatat

Abstract

One method to avoid vibration resonance is shifting natural frequencies far away from excitation frequencies. This study investigates optimizing the natural frequencies of circular cylindrical shells using axially functionally graded materials. The constituents of functionally graded materials (FGMs) vary continuously in the longitudinal direction based on a trigonometric law or using interpolation of volume fractions at control points. The spatial change of material properties alters structural stiffness and mass, which then affects the structure's natural frequencies. The local material properties at any place in the structure are obtained using Voigt model. First-order shear deformation theory and finite element method are used for estimating natural frequencies, and a genetic algorithm is used for optimizing material volume fractions. To demonstrate the proposed method, two optimization problems are presented. The goal of the first one is to maximize the fundamental frequency of an FGM cylindrical shell by optimizing the material volume fractions. In the second problem, we attempt to find the optimal material distribution that maximizes the distance between two adjoining natural frequencies. The optimization examples show that building cylindrical shells using axially FGM is a useful technique for optimizing their natural frequencies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。