Three-dimensional invasion of macrophages is mediated by cysteine cathepsins in protrusive podosomes

巨噬细胞的三维侵袭是由突出足状体中的半胱氨酸蛋白酶介导的

阅读:9
作者:Zala Jevnikar, Bojana Mirković, Urša Pečar Fonović, Nace Zidar, Urban Švajger, Janko Kos

Abstract

Podosomes, specialized actin-rich structures in macrophages (Mfs), degrade the extra-cellular matrix (ECM) and are involved in cell migration. On two-dimensional (2D) surfaces Mfs form spot-like podosomes at the ventral cell surface that develop into protrusive structures in a three-dimensional (3D) environment resembling the ECM. We have shown that the tips of these protrusive podosomes are characterized by increased accumulation of cysteine cathepsins (Cts) B, X, S, H, and L, both in human blood Mfs and in human monocytic cell line U-937. Monocyte-to-Mf differentiation induces an increase in cysteine cathepsin expression and activity, promoting their translocation to the cell surface, where they interact with ECM. This group of proteases is crucial for the extracellular as well as intracellular degradation of ECM, as demonstrated by quantitative monitoring of collagen IV degradation. Furthermore, inhibiting CtsB, X, and S significantly impairs Mf invasion through the 3D matrix. Time-lapse live-cell imaging of CtsB activity revealed that the extracellular and the intracellular ECM degradation are associated with extensive endocytosis at the tip of protrusive podosomes. The targeting of cysteine cathepsins, as the major mediators of human Mf 3D invasion, could be an approach to the treatment of inflammatory and cancerous diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。