C-reactive protein increases BBB permeability: implications for obesity and neuroinflammation

反应蛋白增加 BBB 通透性:对肥胖和神经炎症的影响

阅读:5
作者:Hung Hsuchou, Abba J Kastin, Pramod K Mishra, Weihong Pan

Aims

Acute phase C-reactive protein (CRP), elevated in obesity and inflammation, is a major binding protein for leptin. It is thought that CRP contributes to leptin resistance by preventing leptin from crossing the blood-brain barrier (BBB). Here we determined how CRP interacts with the BBB and whether it deters leptin from reaching CNS targets.

Background/aims

Acute phase C-reactive protein (CRP), elevated in obesity and inflammation, is a major binding protein for leptin. It is thought that CRP contributes to leptin resistance by preventing leptin from crossing the blood-brain barrier (BBB). Here we determined how CRP interacts with the BBB and whether it deters leptin from reaching CNS targets.

Conclusions

The interactions of CRP and the BBB are a two-phase process, with increased paracellular permeability at a high dose that enables its entry into the CNS and serves to induce reactive gliosis and impair CNS function.

Methods

BBB permeability, compartmental distribution, tracer stability, and expression of tight junction protein and inflammatory marker were determined.

Results

CRP was stable in blood, but did not permeate the BBB in trace amounts. However, it increased paracellular permeability at a higher dose. Agouti viable (A(vy)) mice with adult-onset obesity show higher CRP entry into the brain. CRP did not permeate hCMEC/D3 cells nor change zona occludin-1 or cyclooxygenase-2 expression. An intermediate dose of CRP had no effect on leptin transport across the BBB after co-treatment. Thus, acute interactions between CRP and leptin at the BBB level were negligible and did not explain the leptin resistance seen in obesity. Conclusions: The interactions of CRP and the BBB are a two-phase process, with increased paracellular permeability at a high dose that enables its entry into the CNS and serves to induce reactive gliosis and impair CNS function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。