Positron Annihilation Spectroscopy Study of Metallic Materials after High-Speed Cutting

金属材料高速切削后的正电子湮没谱研究

阅读:4
作者:Jinquan Li, Roman Laptev, Iurii Bordulev, Krzysztof Siemek, Pawel Horodek, Haolun Shen, Anton Lomygin, Jian Cui

Abstract

During high-speed cutting, a white layer is often produced on the machined surfaces after mechanical machining, seriously affecting the mechanical properties. These properties are related to the material structure and the defects induced by cutting. However, there is a lack of research on the atomic-scale defects of the white layer. This paper studied the influence of cutting parameters, namely the feed rate, cutting speed and cutting depth, on atomic-scale defects induced by high-speed cutting in GCr15 steel. Positron annihilation studies showed typical plastically deformed or tempered carbon steel defects with additional vacancy cluster components. The quantity of these clusters changed with cutting parameters. Furthermore, significant changes were observed in the subsurface region up to 1 µm, occurring as a result of simultaneous phase transformations, deformation and thermal impacts. The predominant accumulation of only one type of atomic-scale defect was not observed.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。