K2O-Metakaolin-Based Geopolymer Foams: Production, Porosity Characterization and Permeability Test

K2O-偏高岭土基地质聚合物泡沫:生产、孔隙度表征和渗透性测试

阅读:4
作者:Elettra Papa, Elena Landi, Francesco Miccio, Valentina Medri

Abstract

In this paper, four near-net shaped foams were produced via direct foaming, starting from a benchmark metakaolin-based geopolymer formulation. Hydrogen peroxide and metallic silicon were used in different amounts as blowing agents to change the porosity from meso- to ultra-macro-porosity. Foams were characterized by bulk densities ranging from 0.34 to 0.66 g cm-3, total porosity from 70% to 84%, accessible porosity from 41% to 52% and specific surface area from 47 to 94 m2 g-1. Gas permeability tests were performed, showing a correlation between the pore features and the processing methods applied. The permeability coefficients k1 (Darcian) and k2 (non-Darcian), calculated applying Forchheimer's equation, were higher by a few orders of magnitude for the foams made using H2O2 than those made with metallic silicon, highlighting the differing flow resistance according to the interconnected porosity. The gas permeability data indicated that the different geopolymer foams, obtained via direct foaming, performed similarly to other porous materials such as granular beds, fibrous filters and gel-cast foams, indicating the possibility of their use in a broad spectrum of applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。