Intermittent cold exposure upregulates regulators of cardiac mitochondrial biogenesis and function in mice

间歇性冷暴露上调小鼠心脏线粒体的生物合成和功能调节剂

阅读:8
作者:Mithra Sudha Mohan, Aswani Sukumaran Sreedevi, Aparna Nandakumaran Sakunthala, Puthenpura T Boban, Perumana R Sudhakaran, Saja Kamalamma

Abstract

Hypothermic conditions enhance the incidence of cardiovascular diseases due to increased blood pressure. Cold-induced adaptive thermogenesis increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of intermittent cold exposure on the regulators of cardiac mitochondrial biogenesis, function, and its regulation by SIRT-3. Intermittent cold exposed mice hearts showed normal histopathology with increased mitochondrial antioxidant and metabolic function, as evidenced by an increase in the activity and expression of MnSOD and SDH. A substantial increase in mitochondrial DNA copy number and increase in the expression of PGC-1α and its downstream targets NRF-1 and Tfam indicated the possibility of enhanced cardiac mitochondrial biogenesis and function on intermittent cold exposure. Increased mitochondrial SIRT-3 level and decreased total protein lysine acetylation indicate increased sirtuin activity in cold exposed mice hearts. Ex vivo cold mimic using norepinephrine showed a significant increase in PGC-1α, NRF-1, and Tfam levels. AGK-7, a SIRT-3 inhibitor, reversed the norepinephrine-induced upregulation of PGC-1α and NRF-1, indicating the role of SIRT-3 on the production of PGC-1α and NRF-1. Inhibition of PKA with KT5720 in norepinephrine treated cardiac tissue slices indicates the role of PKA in regulating the production of PGC-1α and NRF-1. In conclusion, intermittent cold exposure upregulated the regulators of mitochondrial biogenesis and function through PKA and SIRT-3 mediated pathway. Our results emphasize the role of intermittent cold-induced adaptive thermogenesis in overcoming chronic cold-induced cardiac damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。